

Tropical thin cirrus and relative humidity distributions observed by AIRS and

other A-Train observations

by

Brian H. Kahn¹, Calvin K. Liang^{2,3}, Annmarie Eldering¹, Andrew Gettelman⁴, Qing Yue², and Kuo-Nan Liou²

¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
² Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, CA
³ Joint Institute for Regional Earth System Science and Engineering, UCLA, Los Angeles, CA
⁴ National Center for Atmospheric Research, Boulder, CO

Thanks to: T.P. Ackerman, A.E. Dessler, E.J. Fetzer, A. Nenes, W.G. Read, and R. Wood

AIRS Science Team Meeting Greenbelt, MD October 9th, 2007

Motivation – 1

Results to be submitted:

• Kahn, B.H., C.K. Liang, A. Eldering, A. Gettelman, K.N. Liou, and Q. Yue (2007), Tropical thin cirrus and relative humidity distributions observed by the Atmospheric Infrared Sounder, *to be submitted to Atmos. Chem. Phys. Discuss*.

Cirrus and Earth's climate

- Climatic mean & variability (Ramanathan and Collins, 1991)
- Extensive thin cirrus coverage
- Radiative forcing several times larger than anthropogenic constituents
 - (e.g., McFarquhar et al. 1999; Comstock et al. 2002; Forster et al. 2007)
- Hydrological cycle in UT (Baker, 1997)
 - Very small amounts of water have very large climatic impacts
- Forcing, heating & feedbacks (Liou, 1986; Stephens, 2005)
- UT/LS transport & chemistry (Holton et al. 1995)

Motivation – 2

Cirrus formation/maintenance uncertainties

- Unexplained observations of large ice S_i some ideas:
 - Nitric acid at surface of ice prevents water vapor uptake (Gao et al. 2004)
 - Aerosols composed of organics (Jensen et al. 2005)
 - Lab measurements of small ice deposition coefficient (Magee et al. 2006)
 - Other ideas floated around
 - Nice summary in Peter et al. (2006)
- Ice indirect effects poorly understood, observed, and modeled (Haag and Kärcher 2004)

AIRS and A-train provide new capabilities

- Other satellites limited to cirrus frequency and RH_i (e.g., Sandor et al. 2000)
- AIRS provides:
 - Effective diameter (D_e) and optical depth (τ_{VIS}) (Yue et al. 2007)
 - UT RH; (Gettelman et al., 2006)
- Simultaneous observations of microphysics & RH_i

⇒ A powerful combination with additional A-train observations

Outline

• Thin Cirrus retrieval approach

- Results
 - Thin Cirrus retrievals
 - Joint distributions of thin Cirrus and humidity
- Take home messages
- Future work

Thin Cirrus retrieval approach – 1

- Clear-sky radiances (OPTRAN) + thin Cirrus parameterization
 - Approach of Yue et al. (2007) [in press, J. Atmos. Sci.]
 - Minimize observed + simulated radiances (14 channels from 8–12 μm)
 - Scattering models of Baum et al. (2007) (also used in MODIS Collection 5)

Details of retrieval approach:

- ~ 2.5 million single-layer thin Cirrus over oceans $\pm 20^{\circ}$ lat
- Applied to $0.02 \le ECF \le 0.4$
- Valid for $0.0 < \tau_{VIS} \le 1.0$
- Dynamic effective size: $10 \mu m \le D_e \le 120 \mu m$
- Land fraction < 0.1

Thin Cirrus retrieval approach – 2

- Use AIRS L2 Standard & Support (V5):
 - Cloud top temperature (T_C) , amount, height, and detection validation studies:
 - Kahn, B. H., et al. (2007), Toward the characterization of upper tropospheric clouds using Atmospheric Infrared Sounder and Microwave Limb Sounder observations, *J. Geophys. Res.*, **112**, D05202, doi:10.1029/2006JD007336.
 - Kahn, B. H., et al. (2007), The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals, *J. Geophys. Res.*, **112**, D09201, doi:10.1029/2006JD007486.
 - Kahn, B. H., et al. (2007), Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount, *Atmos. Chem. Phys. Discuss.*, 7, 13915-13958.
 - AIRS calculations of RH_i (Gettelman et al. 2004; 2006)
 - T(z) and q(z) V4 validation (Divakarla et al. 2006; Tobin et al. 2006; McMillin et al. 2007)
- Validation studies used to explore biases in thin Cirrus τ and D_e

Three case studies in thin Cirrus τ and D_e biases

T(z), q(z), T_C, T_S, ε and ρ using normally-distributed 1σ errors of ± 1 K, 10%, 12 K, 1 K, 0.01, and 0.01, respectively

Comstock et al. (2004)

Annual average from focus days

In-cloud RH_i

Thin Cirrus D_e

MODIS 2.13 μm aerosol τ

Inter-hemispheric differences in $D_{\underline{e}}$: The importance of error estimates!

- Tantalizing regional differences in microphysics
 - Consistent with Kärcher (2004): heterogeneous ice nuclei in NH \rightarrow larger D_e
- **BUT**, Statistical significance dependent on consideration of:
 - Error propagation (as in earlier figure), multi-layer clouds, aerosol (dust)
 - .. Cannot make robust conclusion at this time

Joint distributions of thin Cirrus and humidity

"Threshold" RH_i versus RH_i

De versus RHi

In-cloud RH_i vs. τ: What is correct?

- RH_i from Gettelman et al. (2006)
 - Globally 1–3% supersaturation in tropical UT
- In-cloud 8–12% supersaturation
 - More supersaturation in cloud than clear-sky

In-cloud RH_i vs. τ: Is it correct?

Gayet et al. (2004)

Observations from INCA campaign

In-cloud RH_i vs. τ: What is correct?

Haag and Kärcher (2003)

In-cloud supersaturation dependence on RHI

Calculations from a coupled parcel/trajectory model

Are cloud thickness and in-cloud RH_i related?

- The answer is...definitely yes
 - Tropical cases show lower RH_i and less variability
- Coincident single-layer cloud thickness measured by CALIPSO and in-cloud RHi
- In-cloud RH_i distribution broader than should be for low RH_i

RH_i versus D_e: Why a correlation?

Larger ice particles survive in sub-saturated environment?

RH_i versus D_e: Why a correlation?

Gayet et al. (2004)

Observations from INCA campaign

A hint of same dependence?

Big differences in supersaturated conditions

Seasonal Variation of in-cloud RH_i

"Take Home" Messages

- Retrievals consistent with other satellite, in situ, and surface obs
 - Vertical distribution reasonable (refer to JGR and ACPD papers)
 - Increasing $\tau \rightarrow$ increasing D_e
 - Quantified biases due to RTM inputs
 - Produce spurious retrieval "modes" for thinnest cirrus
- Simultaneous in-cloud RH; and microphysics new capability from satellites
 - 8–12% in-cloud supersaturation
 - Peak frequency 60–80%, biased low compared to in situ obs
 - Slight dependence of distribution of RH_i > 1.2 with τ
 - Heterogeneous/homogeneous nucleation differences?
 - For $\tau > 0.25$, RH_i distribution generally insensitive to minimum AIRS q(z) sensitivity
 - Low bias in RH_i correlate with cloud thickness (from CALIPSO)
 - Seasonal, latitudinal variability of in-cloud RH_i distributions
- Importance of scene-dependent error estimates!

Future Work

A larger data sample

- Optically thicker clouds, more complex configurations
- Latitudes outside of tropics

• Focus on CloudSat/CALIPSO track for combined retrievals/comparisons

- Group by cloud-type
- Trajectory models to study air parcel history, in-cloud versus clear sky differences
- Heterogeneous/homogeneous nucleation questions?

• Further improvement of AIRS cloud fields

- Further refinements in retrieval algorithm, stress focus on high cloud and UT RH
- Trustworthy error estimates for all quantities of concern
 - Regional and temporal variability in cirrus properties: Can they be believed?